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Abstract. In this paper, we consider a multi-parameter deformation of the bosonic oscillator algebra and
determine the consistency conditions on the parameters. For a d-dimensional oscillator we find 2d param-
eters. Finally, we present the Fock representation of this oscillator.

1. Introduction

In recent years, a great deal of attention has been paid to
q-deformations of the Lie group and Lie algebras which
are also called quantum groups (q-groups) and algebras
[1–4]. With the discovery of these deformed algebras, q-
deformations of the oscillator algebra which are called q-
oscillators have become a center of attention, so that af-
ter the works of Coon and collaborators [5], Kuryshkin
[6], Macfarlane [7] and Biedenharn [8] on the q-oscillators,
many studies [9–16] have been done in order to find
whether there are other deformed oscillators with similar
properties.

In this paper, we study multi-parameter deformations
of the bosonic oscillator. This study is motivated by the
U(n) invariant n-dimensional Newton oscillator [17] which
satisfies

aia
∗
j − q2a∗

jai = Hδij ,

aiH = q2Hai,

aiaj = ajai, (1)

so that an additional hermitean operator H which be-
comes central in the q → 1 limit appears in the commu-
tation relations. In Sect. 2, first we consider the system
which characterizes the n-dimensional Newton oscillator;
then, we consider the two-dimensional case and we find
its representation. In Sect. 3, we generalize this represen-
tation of the 2-dimensional system to a d-dimensional one.

2. Construction of the d-boson
multi-parameter oscillator
and its two boson representation

As a multi-parameter generalization of (1), let us consider
the following system:

aia
∗
i − q2

i a∗
i ai = H, (2)

aiaj = qijajai, (3)
aia

∗
j = rija

∗
jai, i �= j, (4)

aiH = r2
i Hai, where i, j = 1, 2, . . . , d. (5)

First, we find the relations between the real parameters
qi, qij , ri, rij such that these generalized commutation re-
lations are consistent. It turns out that the most straight-
forward way to arrive at the consistency conditions is to
consider

ajaia
∗
i − q2

i aja
∗
i ai = ajH, (6)

which by using (3)–(5) immediately implies that

q−1
ij rijHaj = r2

j Haj , (7)

r2
j =

rij

qij
, for i �= j. (8)

By replacing i and j in (3), (4) and (8), we get the follow-
ing equations:

qijqji = 1, (9)
rij = rji, (10)

r2
i =

rji

qji
= rijqij , (11)

respectively. In these equations i and j are not summed
over. Using (8) and (11), it is straightforward to obtain

rij = rirj . (12)

Substituting this into (8) gives also an equation for qij :

qij =
ri

rj
, (13)

which means that our system can be rewritten as

aia
∗
i − q2

i a∗
i ai = H, (14)

aiH = r2
i Hai, (15)
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aia
∗
j = rirja

∗
jai, i �= j, (16)

aiaj =
ri

rj
ajai, i �= j,

where i, j = 1, 2, . . . , d. (17)

The above relations do not require any further constraints
on the parameters qi and ri. We will show that the quasi-
bosonic algebra Ad described by these commutation rela-
tions is consistent and physically meaningful by explicitly
constructing its representations. For the one boson case
the algebra A1 is the same as the Fibonnaci oscillator [11];
when r = q it becomes the Newton oscillator mentioned
in the introduction.

For two bosons the commutation relations become

a1a
∗
1 − q2

1a∗
1a1 = H, (18)

a2a
∗
2 − q2

2a∗
2a2 = H, (19)

a1H = r2
1Ha1, (20)

a2H = r2
2Ha2, (21)

a1a
∗
2 = r1r2a

∗
2a1, (22)

a1a2 =
r1

r2
a2a1. (23)

It is clear that, since they commute, a∗
1a1 and a∗

2a2 have
common eigenvectors. We assume that there exists a
ground state | 0, 0〉 which satisfies

ai | 0, 0〉 = 0, (24)

as usual. With the successive application of the creation
operators a∗

i to the ground state, we can obtain the or-
thonormal vectors | n1, n2〉:

(a∗
1)

n1 (a∗
2)

n2 | 0, 0〉 ∝| n1, n2〉, (25)

with

a1 | n1, n2〉 =
√

ε
(1)
n1,n2 | n1 − 1, n2〉, (26)

a∗
1 | n1, n2〉 =

√
ε
(1)
n1+1,n2

| n1 + 1, n2〉. (27)

By considering (18) and (20), we can obtain the following
second order homogeneous difference equation for ε(1):

ε
(1)
n1+1,n2

− (
q2
1 + r2

1
)
ε(1)

n1,n2
+ q2

1r2
1ε

(1)
n1−1,n2

= 0. (28)

When we consider ε
(1)
0,0 = 0 as the initial condition, it is

straightforward to obtain the solution of the above equa-
tion:

ε(1)
n1,n2

= An2

(
q2n1
1 − r2n1

1

)
, (29)

where A may depend on the variable n2. With the same
consideration, from (19) and (21) we can obtain ε

(2)
n1,n2 :

ε(2)
n1,n2

= Bn1

(
q2n2
2 − r2n2

2

)
. (30)

Here, the coefficient B may depend on the variable n1. In
order to find these n2 and n1 dependencies of the coef-
ficients A and B, respectively, first we consider (18) and

(19) and then operate with the operators on the two sides
of these equations on the state | n1, n2〉. Thus, we get

ε
(1)
n1+1,n2

− q2
1ε(1)

n1,n2
= Hn1,n2 , (31)

ε
(2)
n1,n2+1 − q2

2ε(2)
n1,n2

= Hn1,n2 . (32)

Since the right hand sides of the above equations are equal
to each other, we can also write

An2

r2n2
2 (q2

2 − r2
2)

=
Bn1

r2n1
1 (q2

1 − r2
1)

, (33)

which means that both sides are independent of n1 and
n2. Therefore, (29) and (30) can be rewritten as

ε(1)
n1,n2

= Cr2n2
2

(
q2
2 − r2

2
) (

q2n1
1 − r2n1

1

)
, (34)

ε(2)
n1,n2

= Cr2n1
1

(
q2
1 − r2

1
) (

q2n2
2 − r2n2

2

)
. (35)

By redefining the constant C, we can write the above equa-
tions as

ε(1)
n1,n2

= Cr2n2
2

(
q2n1
1 − r2n1

1

)
(q2

1 − r2
1)

, (36)

ε(2)
n1,n2

= Cr2n1
1

(
q2n2
2 − r2n2

2

)
(q2

2 − r2
2)

, (37)

respectively. Finally, we obtain Hn1,n2 by substituting (36)
into (31) or (37) into (32):

Hn1,n2 = Cr2n1
1 r2n2

2 , (38)

where
H | n1, n2〉 = Hn1,n2 | n1, n2〉. (39)

3. Representation
of the multi-dimensional oscillator

The quasi-bosonic algebra Ad was defined in (14)–(17).
Now, we find the multi-particle representations of this
multi-parameter deformed bosonic oscillator system.

For this system, (14)–(17), it is straightforward to see
that a∗

i ai for different i have common eigenvectors. Thus,
the ground state and the excited states can be denoted by

| 0, 0, ..., 0︸ ︷︷ ︸
d

〉 : groundstate, (40)

a∗
1a1 | 0, 0, ..., 0︸ ︷︷ ︸

d

〉 = a∗
2a2 | 0, 0, ..., 0︸ ︷︷ ︸

d

〉 = . . .

= a∗
dad | 0, 0, ..., 0︸ ︷︷ ︸

d

〉 = 0, (41)

(a∗
1)

n1 (a∗
2)

n2 . . . (a∗
d)

nd | 0, 0, ..., 0︸ ︷︷ ︸
d

〉 ∝| n1, n2, . . . , nd〉.

(42)
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With this generalization, we obtain d-copies of the second
order homogeneous difference equation of (28) such that

ε
(i)
n1,n2,...,ni+1,...,nd

− (q2
i + r2

i )ε
(i)
n1,n2,...,ni,...,nd

+q2
i r2

i ε
(i)
n1,n2,...,ni−1,...,nd

= 0, (43)

where

ai | n1, n2, . . . , ni, . . . , nd〉
=

√
ε
(i)
n1,n2,...,ni,...,nd | n1, n2, . . . , ni − 1, . . . , nd〉, (44)

a∗
i | n1, n2, . . . , ni, . . . , nd〉
=

√
ε
(i)
n1,n2,...,ni+1,...,nd

| n1, n2, . . . , ni + 1, . . . , nd〉. (45)

The solution of the difference equations in (43) can be
found in a manner similar to the solutions in (29):

ε(i)
n1,n2,...,ni,...,nd

= An1,n2,...,ni−1,ni+1,...,nd
(q2ni

i − r2ni
i ),

(46)
where the initial conditions are set to zero. Then by con-
sidering (2) and other coefficients as in Sect. 2, we can find
A. The result is given by

ε(i)
n1,n2,...,ni,...,nd

= C

d∏
j=1

r
2nj

j r−2ni
i

q2ni
i − r2ni

i

q2
i − r2

i

. (47)

By substituting any of these coefficients into the corre-
sponding equation obtained from (2) we find

Hn1,n2,...,ni,...,nd
= C

d∏
j=1

r
2nj

j , (48)

so that ε(i) can now be expressed in terms of H:

ε(i)
n1,n2,...,ni,...,nd

= CHn1,n2,...,ni,...,nd
r−2ni
i

q2ni
i − r2ni

i

q2
i − r2

i

.

(49)

4. Conclusion

In this study, we have constructed the multi-parameter
deformed bosonic oscillator system and its Fock repre-
sentation. If we consider the special case of our system
(14)–(17) where all ri = r and all qi = q, we realize that
the spectrum described by ε(i) bears some resemblance to
the spectrum of the d-dimensional quantum group covari-

ant Fibonnaci oscillator in [11]. An interesting question
is whether a similar multi-parameter oscillator construc-
tion with fermionic degeneracy is possible. Such a gen-
eralization requires a minus sign on the right hand side
of (17). However, irrespective of how (14)–(16) are mod-
ified, a consistent algebra cannot be constructed, except
for the case when all ri are equal. In this case the com-
mutation relations aia

∗
j + q2a∗

jai = Hδij , aiH = q2Hai,
aiaj +ajai = 0, which define the fermionic counterpart of
(1), are obtained. Hence, from this point of view, the dif-
ficulty of constructing a deformed fermionic oscillator [18]
is once again established. On the other hand, the consis-
tent bosonic multi-dimensional, multi-parameter oscillator
(2)–(5) provides a framework for application to various
bosonic physical systems.
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